MemgraphToolkit
Overview
This will help you getting started with the Memgraph toolkit.
Tools within MemgraphToolkit
are designed for the interaction with the Memgraph
database.
Setup
To be able tot follow the steps below, make sure you have a running Memgraph instance on your local host. For more details on how to run Memgraph, take a look at Memgraph docs
If you want to get automated tracing from runs of individual tools, you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
Installation
This toolkit lives in the langchain-memgraph
package:
%pip install -qU langchain-memgraph
Instantiation
Now we can instantiate our toolkit:
from langchain.chat_models import init_chat_model
from langchain_memgraph import MemgraphToolkit
from langchain_memgraph.graphs.memgraph import Memgraph
db = Memgraph(url=url, username=username, password=password)
llm = init_chat_model("gpt-4o-mini", model_provider="openai")
toolkit = MemgraphToolkit(
db=db, # Memgraph instance
llm=llm, # LLM chat model for LLM operations
)
API Reference:init_chat_model
Tools
View available tools:
toolkit.get_tools()
Invocation
Tools can be individually called by passing an arguments, for QueryMemgraphTool it would be:
from langchain_memgraph.tools import QueryMemgraphTool
# Rest of the code omitted for brevity
tool.invoke({QueryMemgraphTool({"query": "MATCH (n) RETURN n LIMIT 5"})})
Use within an agent
from langgraph.prebuilt import create_react_agent
agent_executor = create_react_agent(llm, tools)
API Reference:create_react_agent
example_query = "MATCH (n) RETURN n LIMIT 1"
events = agent_executor.stream(
{"messages": [("user", example_query)]},
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
API reference
For more details on API visit Memgraph integration docs
Related
- Tool conceptual guide
- Tool how-to guides