Google Spanner
Spanner is a highly scalable database that combines unlimited scalability with relational semantics, such as secondary indexes, strong consistency, schemas, and SQL providing 99.999% availability in one easy solution.
This notebook goes over how to use Spanner
for Vector Search with SpannerVectorStore
class.
Learn more about the package on GitHub.
Before You Begin
To run this notebook, you will need to do the following:
- Create a Google Cloud Project
- Enable the Cloud Spanner API
- Create a Spanner instance
- Create a Spanner database
🦜🔗 Library Installation
The integration lives in its own langchain-google-spanner
package, so we need to install it.
%pip install --upgrade --quiet langchain-google-spanner langchain-google-vertexai
Note: you may need to restart the kernel to use updated packages.
Colab only: Uncomment the following cell to restart the kernel or use the button to restart the kernel. For Vertex AI Workbench you can restart the terminal using the button on top.
# # Automatically restart kernel after installs so that your environment can access the new packages
# import IPython
# app = IPython.Application.instance()
# app.kernel.do_shutdown(True)
🔐 Authentication
Authenticate to Google Cloud as the IAM user logged into this notebook in order to access your Google Cloud Project.
- If you are using Colab to run this notebook, use the cell below and continue.
- If you are using Vertex AI Workbench, check out the setup instructions here.
from google.colab import auth
auth.authenticate_user()