UnstructuredCSVLoader#
- class langchain_community.document_loaders.csv_loader.UnstructuredCSVLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]#
Load CSV files using Unstructured.
Like other Unstructured loaders, UnstructuredCSVLoader can be used in both “single” and “elements” mode. If you use the loader in “elements” mode, the CSV file will be a single Unstructured Table element. If you use the loader in “elements” mode, an HTML representation of the table will be available in the “text_as_html” key in the document metadata.
Examples
from langchain_community.document_loaders.csv_loader import UnstructuredCSVLoader
loader = UnstructuredCSVLoader(“stanley-cups.csv”, mode=”elements”) docs = loader.load()
- Parameters:
file_path (str) – The path to the CSV file.
mode (str) – The mode to use when loading the CSV file. Optional. Defaults to “single”.
**unstructured_kwargs (Any) – Keyword arguments to pass to unstructured.
Methods
__init__
(file_path[, mode])A lazy loader for Documents.
aload
()Load data into Document objects.
Load file.
load
()Load data into Document objects.
load_and_split
([text_splitter])Load Documents and split into chunks.
- __init__(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]#
- Parameters:
file_path (str) – The path to the CSV file.
mode (str) – The mode to use when loading the CSV file. Optional. Defaults to “single”.
**unstructured_kwargs (Any) – Keyword arguments to pass to unstructured.
- async alazy_load() AsyncIterator[Document] #
A lazy loader for Documents.
- Return type:
AsyncIterator[Document]
- load_and_split(text_splitter: TextSplitter | None = None) list[Document] #
Load Documents and split into chunks. Chunks are returned as Documents.
Do not override this method. It should be considered to be deprecated!
- Parameters:
text_splitter (Optional[TextSplitter]) – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter.
- Returns:
List of Documents.
- Return type:
list[Document]
Examples using UnstructuredCSVLoader