IBM watsonx.ai
WatsonxToolkit is a wrapper for IBM watsonx.ai Toolkit.
This example shows how to use watsonx.ai
Toolkit using LangChain
.
Overview
Integration details
Class | Package | Serializable | JS support | Package downloads | Package latest |
---|---|---|---|---|---|
WatsonxToolkit | langchain-ibm | ❌ | ✅ |
Setup
To access IBM watsonx.ai toolkit you'll need to create an IBM watsonx.ai account, get an API key, and install the langchain-ibm
integration package.
Credentials
This cell defines the WML credentials required to work with watsonx Toolkit.
Action: Provide the IBM Cloud user API key. For details, see documentation.
import os
from getpass import getpass
watsonx_api_key = getpass()
os.environ["WATSONX_APIKEY"] = watsonx_api_key
Additionaly you are able to pass additional secrets as an environment variable.
import os
os.environ["WATSONX_URL"] = "your service instance url"
os.environ["WATSONX_TOKEN"] = "your token for accessing the service instance"
Installation
The LangChain IBM integration lives in the langchain-ibm
package:
!pip install -qU langchain-ibm
Instantiation
Initialize the WatsonxToolkit
class.
from langchain_ibm import WatsonxToolkit
watsonx_toolkit = WatsonxToolkit(
url="https://us-south.ml.cloud.ibm.com",
)
For certain requirements, there is an option to pass the IBM's APIClient
object into the WatsonxToolkit
class.
from ibm_watsonx_ai import APIClient
api_client = APIClient(...)
watsonx_toolkit = WatsonxToolkit(
watsonx_client=api_client,
)
Tools
Get all tools
It is possible to get all available tools as a list of WatsonxTool
objects.
watsonx_toolkit.get_tools()
[WatsonxTool(name='GoogleSearch', description='Search for online trends, news, current events, real-time information, or research topics.', args_schema=<class 'langchain_ibm.toolkit.ToolArgsSchema'>, agent_description='Search for online trends, news, current events, real-time information, or research topics.', tool_config_schema={'title': 'config schema for GoogleSearch tool', 'type': 'object', 'properties': {'maxResults': {'title': 'Max number of results to return', 'type': 'integer', 'minimum': 1, 'maximum': 20}}}, watsonx_client=<ibm_watsonx_ai.client.APIClient object at 0x127e0f490>),
WatsonxTool(name='WebCrawler', description='Useful for when you need to summarize a webpage. Do not use for Web search.', args_schema=<class 'langchain_ibm.toolkit.ToolArgsSchema'>, agent_description='Useful for when you need to summarize a webpage. Do not use for Web search.', tool_input_schema={'type': 'object', 'properties': {'url': {'title': 'url', 'description': 'URL for the webpage to be scraped', 'type': 'string', 'pattern': '^(https?:\/\/)?([\da-z\.-]+)\.([a-z\.]{2,6})([\/\w \.-]*)*\/?$'}}, 'required': ['url']}, watsonx_client=<ibm_watsonx_ai.client.APIClient object at 0x127e0f490>),
WatsonxTool(name='SDXLTurbo', description='Generate an image from text using Stability.ai', args_schema=<class 'langchain_ibm.toolkit.ToolArgsSchema'>, agent_description='Generate an image from text. Not for image refining. Use very precise language about the desired image, including setting, lighting, style, filters and lenses used. Do not ask the tool to refine an image.', watsonx_client=<ibm_watsonx_ai.client.APIClient object at 0x127e0f490>),
WatsonxTool(name='Weather', description='Find the weather for a city.', args_schema=<class 'langchain_ibm.toolkit.ToolArgsSchema'>, agent_description='Find the weather for a city.', tool_input_schema={'type': 'object', 'properties': {'location': {'title': 'location', 'description': 'Name of the location', 'type': 'string'}, 'country': {'title': 'country', 'description': 'Name of the state or country', 'type': 'string'}}, 'required': ['location']}, watsonx_client=<ibm_watsonx_ai.client.APIClient object at 0x127e0f490>),
WatsonxTool(name='RAGQuery', description='Search the documents in a vector index.', args_schema=<class 'langchain_ibm.toolkit.ToolArgsSchema'>, agent_description='Search information in documents to provide context to a user query. Useful when asked to ground the answer in specific knowledge about {indexName}', tool_config_schema={'title': 'config schema for RAGQuery tool', 'type': 'object', 'properties': {'vectorIndexId': {'title': 'Vector index identifier', 'type': 'string'}, 'projectId': {'title': 'Project identifier', 'type': 'string'}, 'spaceId': {'title': 'Space identifier', 'type': 'string'}}, 'required': ['vectorIndexId'], 'oneOf': [{'required': ['projectId']}, {'required': ['spaceId']}]}, watsonx_client=<ibm_watsonx_ai.client.APIClient object at 0x127e0f490>)]
Get a tool
You can also get a specific WatsonxTool
by name.
google_search = watsonx_toolkit.get_tool(tool_name="GoogleSearch")
Invocation
Invoke the tool with a simple input
search_result = google_search.invoke(input="IBM")
search_result
{'output': '[{"title":"IBM - United States","description":"Technology & Consulting. From next-generation AI to cutting edge hybrid cloud solutions to the deep expertise of IBM Consulting, IBM has what it takes to help\xa0...","url":"https://www.ibm.com/us-en"},{"title":"IBM - Wikipedia","description":"International Business Machines Corporation (using the trademark IBM), nicknamed Big Blue, is an American multinational technology company headquartered in\xa0...","url":"https://en.wikipedia.org/wiki/IBM"},{"title":"IBM Envizi ESG Suite","description":"Envizi systemizes the capture, transformation and consolidation of disparate sustainability data into a single source of truth and delivers actionable insights.","url":"https://www.ibm.com/products/envizi"},{"title":"IBM Research","description":"Tools + Code · BeeAI Framework. Open-source framework for building, deploying, and serving powerful agentic workflows at scale. · Docling. An open-source tool\xa0...","url":"https://research.ibm.com/"},{"title":"IBM SkillsBuild: Free Skills-Based Learning From Technology Experts","description":"IBM SkillsBuildPower your future in tech with job skills, courses, and credentials—for free. Power your future in tech with job skills, courses, and credentials\xa0...","url":"https://skillsbuild.org/"},{"title":"IBM | LinkedIn","description":"Locations · Primary. International Business Machines Corp. · 590 Madison Ave · 90 Grayston Dr · Plaza Independencia 721 · 388 Phahon Yothin Road · Jalan Prof.","url":"https://www.linkedin.com/company/ibm"},{"title":"International Business Machines Corporation (IBM)","description":"PROFITABILITY_AND_INCOME_STATEMENT · 9.60% · (TTM). 3.06% · (TTM). 24.06% · (TTM). 62.75B · (TTM). 6.02B · (TTM). 6.41. BALANCE_SHEET_AND_CASH_FLOW. (MRQ).","url":"https://finance.yahoo.com/quote/IBM/"},{"title":"Zurich - IBM Research","description":"The location in Zurich is one of IBM\'s 12 global research labs. IBM has maintained a research laboratory in Switzerland since 1956.","url":"https://research.ibm.com/labs/zurich"},{"title":"IBM (@ibm) • Instagram photos and videos","description":"Science, Technology & Engineering. We partner with developers, data scientists, CTOs and other creators to make the world work better.","url":"https://www.instagram.com/ibm/?hl=en"},{"title":"IBM Newsroom","description":"News and press releases from around the IBM world. Media contacts. Sources by topic and by region. IBM Media center. Explore IBM\'s latest and most popular\xa0...","url":"https://newsroom.ibm.com/"}]'}
To fetch a list of received results, you can execute the below cell.
import json
output = json.loads(search_result.get("output"))
output
Invoke the tool with a configuration
To check if a tool has a config schema and view its properties you can look at the tool's tool_config_schema
.
In this example, the tool has a config schema that contains maxResults
parameter to set maximum number of results to be returned.
google_search.tool_config_schema
{'title': 'config schema for GoogleSearch tool',
'type': 'object',
'properties': {'maxResults': {'title': 'Max number of results to return',
'type': 'integer',
'minimum': 1,
'maximum': 20}}}
To set tool_config
parameters, you need to use set_tool_config()
method and pass correct dict
according to above tool_config_schema
.
import json
config = {"maxResults": 3}
google_search.set_tool_config(config)
search_result = google_search.invoke(input="IBM")
output = json.loads(search_result.get("output"))
There is supposed to be maximum 3 results.
print(len(output))
3
Invoke the tool with an input schema
We need to get another tool (with an input schema) for the example purpose.
weather_tool = watsonx_toolkit.get_tool("Weather")
To check if a tool has an input schema and view its properties, you can look at the tool's tool_input_schema
.
In this example, the tool has an input schema that contains one required and one optional parameter.
weather_tool.tool_input_schema
{'type': 'object',
'properties': {'location': {'title': 'location',
'description': 'Name of the location',
'type': 'string'},
'country': {'title': 'country',
'description': 'Name of the state or country',
'type': 'string'}},
'required': ['location']}
To correctly pass an input to invoke()
, you need to create an invoke_input
dictionary with required parameter as a key with its value.
invoke_input = {
"location": "New York",
}
weather_result = weather_tool.invoke(input=invoke_input)
weather_result
{'output': 'Current weather in New York:\nTemperature: 0°C\nRain: 0mm\nRelative humidity: 63%\nWind: 7.6km/h\n'}
This time the output is a single string value. To fetch and print it you can execute the below cell.
output = weather_result.get("output")
print(output)
Current weather in New York:
Temperature: 0°C
Rain: 0mm
Relative humidity: 63%
Wind: 7.6km/h
Invoke the tool with a ToolCall
We can also invoke the tool with a ToolCall, in which case a ToolMessage will be returned:
invoke_input = {
"location": "Los Angeles",
}
tool_call = dict(
args=invoke_input,
id="1",
name=weather_tool.name,
type="tool_call",
)
weather_tool.invoke(input=tool_call)
ToolMessage(content='{"output": "Current weather in Los Angeles:\\nTemperature: 8.6°C\\nRain: 0mm\\nRelative humidity: 61%\\nWind: 8.4km/h\\n"}', name='Weather', tool_call_id='1')
Use within an agent
from langchain_ibm import ChatWatsonx
llm = ChatWatsonx(
model_id="meta-llama/llama-3-3-70b-instruct",
url="https://us-south.ml.cloud.ibm.com",
project_id="PASTE YOUR PROJECT_ID HERE",
)
from langgraph.prebuilt import create_react_agent
tools = [weather_tool]
agent = create_react_agent(llm, tools)
example_query = "What is the weather in Boston?"
events = agent.stream(
{"messages": [("user", example_query)]},
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
What is the weather in Boston?
==================================[1m Ai Message [0m==================================
Tool Calls:
Weather (chatcmpl-tool-6a6c21402c824e43bdd2e8ba390af4a8)
Call ID: chatcmpl-tool-6a6c21402c824e43bdd2e8ba390af4a8
Args:
location: Boston
=================================[1m Tool Message [0m=================================
Name: Weather
{"output": "Current weather in Boston:\nTemperature: -1°C\nRain: 0mm\nRelative humidity: 53%\nWind: 8.3km/h\n"}
==================================[1m Ai Message [0m==================================
The current weather in Boston is -1°C with 0mm of rain, a relative humidity of 53%, and a wind speed of 8.3km/h.
API reference
For detailed documentation of all WatsonxToolkit
features and configurations head to the API reference.
Related
- Tool conceptual guide
- Tool how-to guides