Skip to main content


Pinecone is a vector database with broad functionality.

This notebook shows how to use functionality related to the Pinecone vector database.

To use Pinecone, you must have an API key. Here are the installation instructions.

pip install pinecone-client openai tiktoken langchain
import os
import getpass

os.environ["PINECONE_API_KEY"] = getpass.getpass("Pinecone API Key:")
os.environ["PINECONE_ENV"] = getpass.getpass("Pinecone Environment:")

We want to use OpenAIEmbeddings so we have to get the OpenAI API Key.

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Pinecone
from langchain.document_loaders import TextLoader
from langchain.document_loaders import TextLoader

loader = TextLoader("../../../state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

embeddings = OpenAIEmbeddings()

API Reference:

import pinecone

# initialize pinecone
api_key=os.getenv("PINECONE_API_KEY"), # find at
environment=os.getenv("PINECONE_ENV"), # next to api key in console

index_name = "langchain-demo"

# First, check if our index already exists. If it doesn't, we create it
if index_name not in pinecone.list_indexes():
# we create a new index
# The OpenAI embedding model `text-embedding-ada-002 uses 1536 dimensions`
docsearch = Pinecone.from_documents(docs, embeddings, index_name=index_name)

# if you already have an index, you can load it like this
# docsearch = Pinecone.from_existing_index(index_name, embeddings)

query = "What did the president say about Ketanji Brown Jackson"
docs = docsearch.similarity_search(query)

Adding More Text to an Existing Index

More text can embedded and upserted to an existing Pinecone index using the add_texts function

index = pinecone.Index("langchain-demo")
vectorstore = Pinecone(index, embeddings.embed_query, "text")

vectorstore.add_texts("More text!")

Maximal Marginal Relevance Searches

In addition to using similarity search in the retriever object, you can also use mmr as retriever.

retriever = docsearch.as_retriever(search_type="mmr")
matched_docs = retriever.get_relevant_documents(query)
for i, d in enumerate(matched_docs):
print(f"\n## Document {i}\n")

Or use max_marginal_relevance_search directly:

found_docs = docsearch.max_marginal_relevance_search(query, k=2, fetch_k=10)
for i, doc in enumerate(found_docs):
print(f"{i + 1}.", doc.page_content, "\n")