Skip to main content


embaas is a fully managed NLP API service that offers features like embedding generation, document text extraction, document to embeddings and more. You can choose a variety of pre-trained models.

In this tutorial, we will show you how to use the embaas Embeddings API to generate embeddings for a given text.


Create your free embaas account at and generate an API key.

import os

# Set API key
embaas_api_key = "YOUR_API_KEY"
# or set environment variable
os.environ["EMBAAS_API_KEY"] = "YOUR_API_KEY"
from langchain_community.embeddings import EmbaasEmbeddings

API Reference:

embeddings = EmbaasEmbeddings()
# Create embeddings for a single document
doc_text = "This is a test document."
doc_text_embedding = embeddings.embed_query(doc_text)
# Print created embedding
# Create embeddings for multiple documents
doc_texts = ["This is a test document.", "This is another test document."]
doc_texts_embeddings = embeddings.embed_documents(doc_texts)
# Print created embeddings
for i, doc_text_embedding in enumerate(doc_texts_embeddings):
print(f"Embedding for document {i + 1}: {doc_text_embedding}")
# Using a different model and/or custom instruction
embeddings = EmbaasEmbeddings(
instruction="Represent the Wikipedia document for retrieval",

For more detailed information about the embaas Embeddings API, please refer to the official embaas API documentation.

Help us out by providing feedback on this documentation page: