Skip to main content

How to attach callbacks to a runnable


If you are composing a chain of runnables and want to reuse callbacks across multiple executions, you can attach callbacks with the .with_config() method. This saves you the need to pass callbacks in each time you invoke the chain.


with_config() binds a configuration which will be interpreted as runtime configuration. So these callbacks will propagate to all child components.

Here's an example:

from typing import Any, Dict, List

from langchain_anthropic import ChatAnthropic
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.messages import BaseMessage
from langchain_core.outputs import LLMResult
from langchain_core.prompts import ChatPromptTemplate

class LoggingHandler(BaseCallbackHandler):
def on_chat_model_start(
self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs
) -> None:
print("Chat model started")

def on_llm_end(self, response: LLMResult, **kwargs) -> None:
print(f"Chat model ended, response: {response}")

def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs
) -> None:
print(f"Chain {serialized.get('name')} started")

def on_chain_end(self, outputs: Dict[str, Any], **kwargs) -> None:
print(f"Chain ended, outputs: {outputs}")

callbacks = [LoggingHandler()]
llm = ChatAnthropic(model="claude-3-sonnet-20240229")
prompt = ChatPromptTemplate.from_template("What is 1 + {number}?")

chain = prompt | llm

chain_with_callbacks = chain.with_config(callbacks=callbacks)

chain_with_callbacks.invoke({"number": "2"})
Chain RunnableSequence started
Chain ChatPromptTemplate started
Chain ended, outputs: messages=[HumanMessage(content='What is 1 + 2?')]
Chat model started
Chat model ended, response: generations=[[ChatGeneration(text='1 + 2 = 3', message=AIMessage(content='1 + 2 = 3', response_metadata={'id': 'msg_01NTYMsH9YxkoWsiPYs4Lemn', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 16, 'output_tokens': 13}}, id='run-d6bcfd72-9c94-466d-bac0-f39e456ad6e3-0'))]] llm_output={'id': 'msg_01NTYMsH9YxkoWsiPYs4Lemn', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 16, 'output_tokens': 13}} run=None
Chain ended, outputs: content='1 + 2 = 3' response_metadata={'id': 'msg_01NTYMsH9YxkoWsiPYs4Lemn', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 16, 'output_tokens': 13}} id='run-d6bcfd72-9c94-466d-bac0-f39e456ad6e3-0'
AIMessage(content='1 + 2 = 3', response_metadata={'id': 'msg_01NTYMsH9YxkoWsiPYs4Lemn', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 16, 'output_tokens': 13}}, id='run-d6bcfd72-9c94-466d-bac0-f39e456ad6e3-0')

The bound callbacks will run for all nested module runs.

Next steps​

You've now learned how to attach callbacks to a chain.

Next, check out the other how-to guides in this section, such as how to pass callbacks in at runtime.

Was this page helpful?

You can also leave detailed feedback on GitHub.