Skip to main content


Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection.

This notebook goes over how to use a retriever that under the hood uses an SVM using scikit-learn package.

Largely based on

%pip install --upgrade --quiet  scikit-learn
%pip install --upgrade --quiet  lark

We want to use OpenAIEmbeddings so we have to get the OpenAI API Key.

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
OpenAI API Key: ยทยทยทยทยทยทยทยท
from langchain_community.retrievers import SVMRetriever
from langchain_openai import OpenAIEmbeddings

Create New Retriever with Textsโ€‹

retriever = SVMRetriever.from_texts(
["foo", "bar", "world", "hello", "foo bar"], OpenAIEmbeddings()

Use Retrieverโ€‹

We can now use the retriever!

result = retriever.invoke("foo")
[Document(page_content='foo', metadata={}),
Document(page_content='foo bar', metadata={}),
Document(page_content='hello', metadata={}),
Document(page_content='world', metadata={})]

Was this page helpful?

You can leave detailed feedback on GitHub.